CHARGED-PARTICLE
AND RADIATION
EQUILIBRIUM

BAEN-625 Advances in Food Engineering
A smaller internal volume \(\nu \) exists about a point of interest, \(P \).

\(V \) is larger enough so the max. distance of penetration \(d \) of any emitted rays plus their scattered and secondary electrons is less than the minimum separation \(s \) of the boundaries of \(V \) and \(\nu \).

Radioactivity is emitted isotropically on the average.

Volume \(V \) containing a radioactive source.
RE EXISTS IN ν

- The atomic composition of the medium is homogeneous
- The density of the medium is homogeneous
- The radioactive source is uniformly distributed
- There are no electric or magnetic fields present to perturb the charged-particle paths
Image a plane T that is tangent to the volume V at a point P'.

Consider the rays crossing the plane per unit area.

There will be perfect reciprocity of rays for all possible orientation of tangent planes around V.

For each type and energy of ray entering V, another identical ray leaves.
Reversing the positions of a point detector and a point source within an infinite homogeneous medium does not change the amount of radiation detected.
RADIATION EQUILIBRIUM

\[
\begin{align*}
\left(\overline{R_{\text{in}}} \right)_u &= \left(\overline{R_{\text{out}}} \right)_u \\
\left(\overline{R_{\text{in}}} \right)_c &= \left(\overline{R_{\text{out}}} \right)_c
\end{align*}
\]

- The energy carried in and out of v are balanced for both indirectly and directly IR.
- The bars signify expectation values.
Under RE conditions the expected value of the energy imparted to the matter in ν is equals to that emitted by the radioactive material in ν
If RE exists at a point in a medium, the absorbed dose is equal to the expectation value of the energy released by the radioactive material per unit mass.
CPE exist for the volume v if each CP of a given type and energy leaving v is replaced by an identical particle of the same energy entering.

If RE exists so CPE exists!
CPE FOR INDIRECTLY IR FROM EXTERNAL SOURCES

- The volume V contains a homogeneous medium, uniformly irradiated throughout by photons.
- Secondary CP are thus produced uniformly throughout V with the same direction and energy distribution everywhere.
- If the small distance separating the boundaries of V and ν is greater than the max. range of CP present, CPE exists.
Photon with fluence energy is present in media A and B having 2 different average energy absorption coefficients.
CPE IN THE MEASUREMENT OF X

$$X = \Psi \left(\frac{\mu_{en}}{\rho} \right)_{E, air} \left(\frac{e}{W} \right)_{air} = (K_c)_{air} \left(\frac{e}{W} \right)_{air} = \frac{(K_c)_{air}}{33.97}$$

- Measurement of X (only defined by photons) is described by this equation.
- Difficult because K_c cannot be measured by any direct means.
- With CPE in an ionization chamber allows for the measurement of X.
The average X in air volume \(v \) equals the total charge released in air by all electrons \((e_1) \) that originate in \(v \), divided by the air mass \(m \) in \(v \).

IF CPE exists, each electron carrying an energy \(T \) out of \(v \) is compensated by another electron \((e_2) \) carrying the same energy in.

Thus the same ionization occurs in \(v \) as if all \(e_1 \) remained there.

So, the measurement of \(Q/m \) ~ average X in \(v \).

\[
\overline{X}_v = \frac{Q}{m}
\]
RELATING D TO X FOR PHOTONS

\[D_{\text{air}}^{\text{CPE}} = (K_c)_{\text{air}} = X \left(\frac{W}{e} \right)_{\text{air}} \]

\[0.01D_{\text{air}}^{\text{CPE}} = 0.01(K_c)_{\text{air}} = 2.58 \times 10^{-4} \times 33.97X \]

\[D_{\text{air}}^{\text{CPE}} = (K_c)_{\text{air}} = 0.876X \]
CPE FAILURE IN A FIELD OF PHOTONS

- Atomic composition within V is not homogeneous
- Density in V is not homogeneous
- Field of photons in V is non-uniform
- Electric or magnetic field is present in V and it is non-homogeneous
V is too close to the source of IIR
- More particles e_3 are produced at point P_3 than e_1 at P_1
- More particles will enter v than leave it

V is divided by a boundary between different media
- # CP arriving in v is different due to change in CP production, or/and change in the range or geometry for scattering of those particles

High energy radiation
- Penetration power of secondary CP increases more rapidly than the penetration power of the photons
- The # CP at P_3 > than at P_1